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ERROR ESTIMATES 
ARISING FROM CERTAIN PSEUDORANDOM SEQUENCES 

IN A QUASI-RANDOM SEARCH METHOD 

RICARDO A. MITCHELL 

ABSTRACT. In this paper we apply number-theoretic results to estimate the dis- 
persion, a measure of denseness for sequences in a bounded set, of the Halton 
and Hammersley sequences in the hypercube Is = [0, 1]s . It is seen that they 
attain the minimal order of magnitude for the dispersion. 

1. INTRODUCTION 

Random search methods are common in nonsmooth optimization. These 
methods are based on selecting random samples from the domain of the target 
function. The effectiveness of these methods depends on the distribution of 
the random sample selected. If the random sample is replaced by a determin- 
istic point set, we have a type of quasi-random search method developed by 
Niederreiter [1]. 

To describe the method of Niederreiter, we consider the problem 

M= supf(x), 
xEA 

where f: A -- R is continuous on the bounded set A C Rs, s > 1 . Let {Xi}ijN 
be a deterministic point set in A. 

We define the modulus of continuity of f on A by 

cof(t) sup If(x) - f(Y)I, t > O 
x, yEA 

d(x,y)<t 

and the dispersion by dN = SUpXEA minl<i<N d (x, xi), where d(-, *) is a metric 
on A, normally taken to be the maximum or Euclidean metric. An approxima- 
tion to M is MN = maxl<i<N f(xd) with the error bound M - MN < wf(dN). 
We note that as f is continuous, convergence to the global solution is assured, 
i.e., MN - M as N -+oo, if dN - O as N --oo. 
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2. BOUNDS FOR dN 

It has been shown in [1] that for any N points in A, dN > CAN 1/s, where 
CA is a constant depending only on A. We assume from now on that A is 
a subset of Is = [0, If. Then the dispersion is related to the most useful 
measure of uniform distribution for sequences, called the discrepancy. This is 
defined by 

DN= SUP A(K, N) V(K)) N 
K N 

where K runs through all subintervals of Is and the counting function A(K, N) 
is the number of i, 1 < i < N, such that xi E K. The relation 

(1 ) dN < ? DINI 

is established in [1] for the Euclidean metric. For the maximum metric one 
obtains 

(2) d' < DN1 N- N 

according to [6]. 
Consequently, bounds of the Erdos-Turan-Koksma type (see [2]) may be ob- 

tained for the dispersion, using (1) and (2). For the case s = 1, we have 

dN?C(m+ 1 Q(h m+i) | CE exp(27rihxk)) 

for all m E N. However, employing a theorem of Niederreiter and Philipp [3], 
we obtain a different inequality. We start with 

Remark 1. For any continuous function f: A C R ---1 R and any compact 
interval I C A, if UiEJ Ii = I, J a finite index set, we have 

sup f(x) = max sup f(x). 
xEI iEJ XEIi 

Remark 2. Let x1 < X2 < ... < XN be N points in I = [0, 1]. The dispersion 
dN (I) of these points in I is given by 

dN(I) =max sup x1i -xl, 
1<i<N XES(xi) 

where S(xi) = {x E Ilai_ < x < ai}, 1 < i < N, with ao = 0, ai = 

(xi+xi+l)/2, 1 < i< N-, and aN = 1. 

Remark 3. For any sequence of N points x1 < X2 < < XN in I = [0, 1], 
we have 

dN(I)= max sup jai -XI, 
where)O=O<a<NXE[Xidxi+N = 

where xo = O and XN+1 = 1. 
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Lemma 1. The dispersion of the points x1 ? x2 < ? XN in [0, 1] satisfies 

dN(I) < m +I+ 7E(- 1) E(ak-ak ) exp(2rihxk) 

for all m E N. 

Proof. Let f: I = [0, 1] R be defined by f(O) = 0 and f(x) = a1 for 
x <x<xj+1, O<i<N, where xo =O andxN+l=I. Then f(O) = and 
f(1) = 1, and f is a nondecreasing function on [0, 1]. Also 

sup If(x) - x= max sup If(x) - xi 
xEI O<i<Nxe(xi,lxi+ 

max sup jai -xi=dN(I). O<i<N XE(xi , Xi+] 

Invoking Theorem 1 in [3], we get 

N( )- m+ + I ( m +l)t 

for all m E , where f(h) = f0 exp(27rihx) df(x). Clearly, 

N 

f(h) = (ak - ak l ) exp(27rihxk). 
k=1 

The result follows. O 

H. Niederreiter [6] first proved a result of the type given in Lemma 1. By 
invoking the following theorem of Niederreiter [7], we obtain yet another in- 
equality. 

Lemma 2 (Niederreiter [7]). Let f be a nondecreasingfunction on [0, 1] = I 
with f(O) = 0, f(1) = 1 . Suppose the function g on I satisfies a Lipschitz 
condition, i.e., Ig(u) - g(v)I < LIu - v I for all t, v E I, as well as g(O) = 0, 
g(l)=1. Then 

sup I(f(u) - f(v)) - (g(u) - g(v))l 
U, VEI 

6L ~~~~~~~~~1 
/3 

< {2 1: WI |f(h )-(h )|} 

Corollary 1. Let x1 < X2 < < XN be N points in I = [O, 1]. Then the 
dispersion of these points in I satisfies 

(3) dN(I) ? 2 E { _h2 E(ak -ak-1) exp(2lihxk) } 

Proof. Same as that of Lemma 1. o 
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If we choose x =0, i= 1, 2,..., N, then dN(I) = 1. We see that the 
right-hand side of (3) reduces to 

(00)~ ~~1/3 

(7r2 h=I h2 

2 Hence the constant 6/7r in (3) is best possible. 
-The following results are easily obtained. 

Remark 4. Let x1 ? X2 < -. ? XN be N points in I = [0, 1] with dispersion 
dN(I), and let f be a function of bounded variation V(f) on I. Then 

(i) I f f(t) dt - k-l (a-ak l)A(xk) ? V(f)dN( a 

(ii) IEZ=I(ak -ak-1 ) exp(2x ixkk) <4dN(I) . 

Similar inequalities were found by Kuipers and Niederreiter in [4] for the dis- 
crepancy DN and the sum k Zkt= f(xk) in the case of (i), and DN and the 
sum NZU1 exp(2lkixk) in the case of (ii). 

3. THE HALTON AND HAMMERSLEY SEQUENCES IN I 

Let R E N - { 1 }; then any nonnegative integer K may be uniquely repre- 
sented as 

M 

(4) K EajRj, O<a.< R-1. 
1=0 

Let SN={O, 1. . ,N - 1}. Define the injective map q$:N U{O} [O, 1], 
with radix R by 

M 
(5) RR(K) = 

1=0 

where K, R, and aj, j=0, 1, ... M, are as defined in (4). 

Definition. The s-dimensional Halton sequences are defined by 

(6) (OR, (I),9 OR ( ) ' 'O XR(1)) 1=91.. 

where Ri, i = 1, .. ., s, are pairwise relatively prime and mini Ri > 2. 
The s-dimensional Hammersley sequences are given by 

(7)~~~~ N OR, (9 .. 9 * O*R5 
, 

(1) N 

where Ri, i= 1, ..., s - l, are pairwise relatively prime (usually taken to be 
the first s - 1 primes) and min. R > 2. 

Information on Halton and Hammersley sequences can be found in [2, 5]. 
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Lemma 3. Let R1, R2 , Rs be pairwise relatively prime and n 1.. . nS be 
nonnegative integers such that N > rHs=I R7i . Let 11, ... 1, be integers with 
0 < li < Rii - I for i =1, ...,s. Then there exists a number L E SN such 
that 

S 

(ckR,(L), ... , d)(L)) E X [lIRn i, (li + 1)R ni). 

Proof. Let (a,a...,&e) E X I [liR +, (lI+1)R1'). Then for any i, 1 < 

i?< 5 i may be represented uniquely by 

n -1 I 00' n-i 

c= E aijRJ;-' +Ea R 

j=O j=ni 

n,-l 00 

- at n_ja R j + Ea11R7''. 
i=0 j=ni 

By definition, there is a corresponding L, 0 < L < N - 1, with )R, (L) E 

[iR1 ni, (YI + 1)R, ni] for i = 1, ... , s if and only if 

ni-I K 

L=Ea Ri_+aijRj K eN, i=1, .. , 
J=0 j=n, 

or 
Ki 

L =fii + a aiRj 3 i =I,... s 

j=ni 

where ? < O i = >j ai R < R I - Hence, equivalently, L satisfies 
the congruences 

(8) L =_ /. (mod Ri), i = 1, ...,. 

By the Chinese remainder theorem there exists an L E SN satisfying (8). The 
lemma is established. c 

With the aid of Lemma 3 we may now establish the following 

Theorem 1. Let the integers RI, ... , R, > 2 be pairwise relatively prime. Then 
the sequence (6) has dispersion dN(HALT) satisfying 

S 

dN(HALT) < C(Rj)N I/s for N > JR, 
i= } 

where C(Ri) is a constant depending only on R1I7.. , Rs. 
Proof. We can assume that R1 = min(R1, ... , Rs). For any N > f1=j R, 

there exists a positive integer k1 such that Rk4 < N < Rk+l . Now choose the 
k k + I k +1 

integers k2, .,ks such that Rii'< RI' < R1' for i= 2,..s and define 
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the nonnegative integers n1, ... ns by n1 = [ki/s], i = 1, 2, ..., s, where 
[x] is the greatest integer less than or equal to x. Then either 

s 

(9) (i) RkI+1 > N >J7Rni 
i=9 

or 
S 

(10) (ii) RkI+l > nR N > R 

Case (i). We note that 

Rni_I 

[0, i)5 = U X [lIR7n i (lI + 1)R ni). 
'Ij=O - 

Moreover, by Lemma 3 there is at least one point from the first N terms of (6) 
in each hyperrectangle 

X [I R- ni, (/i + I)R' ni), ? < ii < Rni t1. 
i=l 

Hence, we have 
s 

dN(HALT) < ?(R i 
i=l1 

Now 
ki <sni+s- 1 <ki+ 1 <s(ni+ 1), 

so 
R s(ni+1) > Rki+1 >R k1+1> N~ for i=1,***sI 

i I - 1 

which implies that 

R-nI < IRN-s fori= s 

It now follows that 

N i/S. dN(HALT) < ( Ri ) N-1 

Case (ii). If N does not satisfy (9), then we have (10). Hence, 

Note that N > fli=l Ri implies that n1 ? 1. Using arguments similar to those S 
in~~~~~~ Cas (i) wefndta 

di (HALT) <?12n + Z R-2n' 
i=2 
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It then follows that 

dN(HALT) < [R4 + R2] N' 1/. 

The theorem is proved. o 

Theorem 2. Let R1, ... , Rs5I be integers > 2 that are pairwise relatively 
prime. Then the sequence (7) has dispersion dN(HAMM) satisfying 

s-i 
dN(HAMM) < C(Rj)N 

11s forN?>J7Ri 
i=1 

where C(Ri) is a constant depending only on R1, ..., Rs_,. 
Proof. In the first paragraph of the proof of Theorem 1, replace s by s - 1 and 
N by N1l /s and select nI, ..., n51 in the same way. Then either 

s-1 

(11) (i) R 'k+ > Nl-l /S> JjRni 
i=1 

or 
s-i 

(12) (ii) R I1 >? rJR7i> N1-1/s > RI. 
i=1 

Choose M = [N/ lsH_ R7'], then divide the interval [0, 1] into the M con- 

secutive intervals [pM 1, (p + 1 )M'], where the integer p satisfies 0 < p < 
M- 1. We observe that for each p, 0 < p < M- 1, the interval [pM 1, 
(p + I)M'] contains, for some 11 E , the Q numbers, Q = rFi=l R7i, 

1 1+ 1 1+ Q -1 
N' N ' ' N 

It follows that there exists an 1 satisfying the (s - 1) congruences 

I-.Bi (mod RIi i =2, 3,...s-1 _ (mod RP), 

and l/N E [pM' , (p + 1)M'], where p = n1 or n1 -1 if (i) or (ii) holds, 
respectively. From this we deduce that 

s-1 
d2(HAMM) < M? 2 + R 2p +ER72i . 

i=2 

Proceeding as in the proof of Theorem 1, we arrive at the conclusion 

s- i\ 1/2 

dN(HAMM) < R 2a + R 2b + R2 N-I/s 
i=2 

where a=0 if M>N1S , a= 1 if M<N'ls <M+ I, b= 1 if(ll) holds, 
and b = 2 if (12) holds. This completes the proof. o 
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The estimates for dN(HALT) and dN(HAMM) obtained in the proofs of 
the above results are clearly not the best possible. If N is known and the radices 
Ri 1 < i < s, are chosen, then a direct calculation will yield better values for 
these estimates. Let us consider the following examples. 

Example 1. Take N = 72 and s = 2. Good choices for the radices are RI = 2 

and R2 = 3 in the case of the Halton sequence. Clearly, N = 72 = 2332, 

i.e., n1 =3, n2 =2, then dN(HALT) < (1/8)2 + (1/9)2. Since it is more 
economical to convert the integers {1: 0 < / < N - 1 } to bases 8 and 9 than to 
the bases 2 and 3, the radices R1 = 8 and R2 = 9 would be preferred as the 
estimate for dN(HALT) remains the same. 

Example 2. If s = 2 and N = 675 for the Halton sequence, and R1 = 2, 
R = 3, then 

5 3 5-13 253 =864>N>2 3. 

Hence, dN(HALT) < (/16)2 + (1/27)2. However, if we take RI = 25, 

R2 = 27, then N = R1R2 and dN(HALT) < (1/25)2+ (1/27)2 . Thus the 
pair of radices R1 = 25, R2 = 27 gives a better distribution. In both cases the 
estimates are better than those implied by Theorem 1. 

4. CONCLUSION 

We have already seen that for any N points in a bounded set A, dN(A) > 

CAN 1 /s, where CA is a constant depending only on A. Hence both the Halton 
and Hammersley sequences possess the minimal order of magnitude for the 
dispersion. This justifies their importance in the search method mentioned in 
the introduction. When using the Halton sequences, the following is suggested: 
let Nm = m 1sE=I Rni be the number of function evaluations available, where 
radices R, i = 1, ..., s, and the numbers ni, i = 1, ..., s, are selected 
to minimize the estimate for dN . We start the search with N points where 
N = Nm/nm. We then keep adding N points. 

From the proof of Theorem 1, we observe that the first N points divide 
the cube Is into N rectangles, and after Nm points have been used, each 
rectangle, by Lemma 3, has m points. Thus the Halton sequences, when used 
in this manner, behave like a "stratified" sample. 
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